Title of the talk Subtitle of the Talk

Author Name Subauthor

Date

Title of slide

Theorem This is some theorem that we write here as an example that has x and y and some other things.

$$1 + 2 + 3 + \dots + n = \frac{1}{2}n(n+1)$$
 (1)

Title of slide

Theorem This is some theorem that we write here as an example that has x and y and some other things.

$$1 + 2 + 3 + \dots + n = \frac{1}{2}n(n+1)$$
 (1)

Proof This is a proof that we write here. \Box

Title of slide

Theorem This is some theorem that we write here as an example that has x and y and some other things.

$$1 + 2 + 3 + \dots + n = \frac{1}{2}n(n+1)$$
 (1)

Proof This is a proof that we write here.

□

Definition A prime number is a number that is only is divisible by 1 and itself.

Title of slide

Theorem This is some theorem that we write here as an example that has x and y and some other things.

$$1 + 2 + 3 + \dots + n = \frac{1}{2}n(n+1)$$
 (1)

Proof This is a proof that we write here. □

Definition A prime number is a number that is only is divisible by 1 and itself.

Example The function $f(x) = x^2$ is not injective.

Plain T_FX;

Title of slide

Theorem This is some theorem that we write here as an example that has x and y and some other things.

$$1 + 2 + 3 + \dots + n = \frac{1}{2}n(n+1)$$
 (1)

Proof This is a proof that we write here. \square

Definition A prime number is a number that is only is divisible by 1 and itself.

Example The function $f(x) = x^2$ is not injective.

- Plain TEX;
 - ▶ Plain T_EX;
 - ♦ Plain T_EX.

Typesetting Details

How these slides were typeset?

- Purely typeset in Plain TEX format by Donald Knuth's TEX engine;
- The macros defining the style of these slides is around 300 lines of code;
 - Mostly made of TEX primitive control sequences;
 - Achieving graphical effect is done via driver;
 - ▶ Pausing is done entirely inside TEX and driver independent;
 - ♦ I did this in TEX output routine;
- The text typeface is Computer Modern Sans Serif by Donald Knuth;
- The mathematics typeface is AMS Euler by Herman Zapf;

Bibliography

References

- [1] C. W. Borchardt, "Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante," *Journal für die reine und angewandte Mathematik* **57** (1860), 111–121.
- [2] Karel Čulik, "Zur Theorie der Graphen," *Časopis pro Pěstování Matematiky* **83** (1958), 133–155.
- [3] Dragoš M. Cvetković, Michael Doob, Ivan Gutman, and Aleksandar Torgašev, *Recent Results in the Theory of Graph Spectra*, Annals of Discrete Mathematics **36** (1988).